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The influence of long-range interactions decayingdidimensions as R®"“ on the critical behavior of
systems wittmegativeFisher’s correlation-function exponent for short-range interactiggg<0, is reexam-
ined. Such systems, typically described §3field theories, are, e.g., the Potts model in the percolation limit,
the Edwards-Anderson spin-glass model, and the Yang-Lee edge singularity. In contrast to preceding studies,
it is shown by means of Wilson’'s momentum-shell renormalization-group recursion relations that the long-
range interactions dominate as longeas 2 — nsg. Exponents changeontinuouslyto their short-range values
at the boundary of this regiohS1063-651X98)50609-5

PACS numbeps): 64.60.Ak, 05.40+j, 64.60.Fr

Fifteen years ago there was some debate about the influmined by comparison with the scaling behavior of the full
ence of long-range interactiofidecaying asl(R)~1/R%*?  inverse correlation functiol,(q)sg<q? 7SR that corre-
in d dimension$ on the critical exponents of systems that sponds to the nontrivial stable fixed point solution of a prop-
show a negative Fisher-exponentygg if the long-range erly chosen renormalization-group transformation.
forces are abseif,2]. Finally it was claimed that the long- In the present Rapid Communication | show that also in
range interactions leading to a Fisher-expongrg=2—0  the casepsg<0 the long-range interaction dominates as long
dominate for allo<2, and, by reason of an instability, the as 2— o= 7 gr>7sg. At 7 r= 75 the exponents change
exponents change discontinuously to their short-range valueontinuouslyto their short-range values that hold everywhere
at o=2. The assumption that long-range interactions decayfor ¢>2— ngg. This behavior is well known for models
ing with o>2 are generally equivalent to purely short-rangewith sg>0 [3—7]. In the caseysg<0 the incorrect result of
interactions seems to be the accepted lore. Indeed in tHd,2] with respect to the crossover has not been corrected so
Gaussian part of an effective Landau-Ginzburg-Wilsonfar. It arises from a renormalization group that is not appro-
Hamiltonian in momentum spaCH0=%fq(r+j2q2+jaq” priate for that case because it mixes in a redundant operator
+ -+ )8¢S_q (Sq is the Fourier transform of an order param- in the terminology of Wegndi8]. | show that in general the
eter fluctuation andf - ..=[d%---) where as usuaj, limit ¢—2 produces a contributior g2Inq to the Gaussian
stems from the short-range part of the interactishich also  part of the Hamiltonian that is a relevant perturbation here.
contributes tor) and j, from the long-range ong,, is na-  Thus, the critical exponents are different for the cases with or
ively irrelevant in comparison tg, at long-wave lengths if without such a perturbation that is therefore responsible for
o>2. Of course, this is an incorrect argument below thethe apparent discontinuity of exponents.
upper critical dimension where the nonquadratic higher- Systems with a negative Fisher exponepyr are typi-
order terms of the Hamiltonian play a dominant role. Thecally described by critical®-field theoretic model§9] with
relevance of the long-range temy” (which does not renor- an upper critical dimensiod,= 6, such as the Potts model in
malize because of its nonanalyticity @ has to be deter- the percolation limit[10-12, the Yang-Lee singularity
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model[13,14], and the Edwards-Anderson spin-glass modeland
in the replica formalisn{15,16. Besides these equilibrium
models, nonequilibrium models of thg® type are given by

epidemic processes that lead to percolation clusters. Here g—gj1- SIn b+0(g?w?) (4)
long-range interactions creep in if the disease spreads by (1+n)

Levy flights [17,18. While treating these nonequilibrium

models | became aware of the earlier wdtk2] on long- h—sh-+ W_/gm b (5)
range interactions i°> models. 1+r

In this Rapid Communication | concentrate on the discus-
sion of the Yang-Lee model as the simplest among all otherklere, | have defined
leading to similar recursion equations. To stick close to the
above mentioned work, | use the Wilson renormalization- w=(4m)”Y2g4 T (d/2), (6)
group transformation based on the elimination of short-wave o
fluctuations and a hard momentum cutoff normalizedjgo  @ndK(v.r) is given by
=1. | perform the renormalization group to one-loop order )
and use the expansion where=6—d. This is sufficient to K(v,r)= d-2 " 2+2P—dv_ v 1__Pvr+ 2—v dr
produce nontrivial crossover behavior, singgg=0O(¢). ' 4 8 '

8 4 8
| write the Yang-Lee Hamiltonian of the scalar fieddn (7)

the following form:
H= f d
caling ¢ of the fields s=(r)=¢s’(b™r), where s=(r)
, 19 5 =[q=p-1€'9"s4 in such a way that a renormalization group
T8+t %S +ihst. (1) is constructed which leads to fixed points and does not mix
in redundant dangerous operatof8]. The operator gener-
Here (V17rs)?2 is defined in momentum space as ated by a rescaling of the fields without an elimination is
q2(l*p)sqsiq, and the momentum scale is chosen such tha$Uch a redundant operator. Thus, the.rescah.ng'fajcmust
lal<g.=1. | have written the long-range exponent as be chosen carefully. The ol@nd working definition for £
=2(1—p). Then p=0(e) in the crossover region. The follows from the requirement to h_old the pr_opagat_o_r finite at
Gaussian part of with the derivatives of the field is posi- h€ cutoff momentum to exclude infrared singularities. Then
tive definite as long as=0 irrespective of the sign of, and such smgularltle; cannot arise in the full e_I|m|nat|on proce-
reads in momentum spadsg?(1—v InQ)s;s_q in the limit dure. Note that in the long-range interaction problem nor-
p—0. Thus, also in this limit the model does not coincige Mally one holds constant the coefficient of the nonanalytic

with its short-ranged counterpart unless O(p). The un- €M ~q?!"7). This may be the simplest possibility but
perturbed correlation functiofthe propagator of a diagram- 1€ads to the difficulty of a vanishing inverse propagator in
matic perturbation expansipfollows from Eq.(1) as the present casid,2]. Therefore, I define

After elimination of the short-wavelength fluctuations an ap-
1 ,. U L ) ) propriate rescaling has to be introduced as the last step of the
5(Vs) +%[(V “P5)°=(Vs)7] renormalization transformation. The goal is to choose a res-

v 1 {2=b2_d_‘/’(w’“). (8)
Go(a)=| g°+ Z—[Q‘z”—l]qzﬂ - 2

p Here the functiony(w,v) follows from the requirement
Gi(g=1r"=0)=Gy(g=1,=0)=1 for the rescaled propa-
gator. Now by rescaling Eq$3) and (4), renormalized pa-
rameters are found from

Thus, the scale of the fields is defined such that fe0 the
propagator is 1 at the cutoff momentupp=1. The propa-
gator is positive definite for alj and p as it should be for
stability.

The calculation of the momentum integrals that arise by 2
eliminating to one-loop order fluctuatiorsg which depend
on momenta in the intervél~ 1< q=<1 with b~1 is standard
and does not present any technical difficulties. The coeffi- =q2b“/’[ 14 L(bzpq—zp_l)_ 2wK(v,r) In b]
cients of the terms of different order in the Hamiltoni&nin 2p d(1+r)4 ’
Eqg. (1) change by the elimination procedure to

1+ v—(q—2p—1)]
2p

9

Q% 1+ 5o (@ %= 1) 41 and
—>q2[1+ ;—p(qz”—l)—zt;’zr—mln b] r,:bz_w{H (1+r)2In b]’ (19
+[r+ (1:Vr)z'” bl +0(g*w?) @3) w':wbﬁ-d-w{ Tl b}, (11)
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w/g d-6
1 p(d+2-p)/2
h'=b h+ o7 In b}. (12 GSR
e GLR _
Taking Eq.(9) for g=1 yields the equation fo, SR n=2p P
N=-(6-d)19
- v, 2wK(v,r) Ll_g J6-d)6
1=b " 1+ —(b**—1)— ———Inb. (13 p=-(6-ayIf |\ M=
2p d(1+r)* ‘

Expandingb=expl to first order inl aroundl =0 one finds

o 2wK(v,r)
S d@a+n®

2 2
=v—V3—v(l—Tpv—%)+O(82). (14)

In the last equation | have usedO(w), w=0(e), and |
have retained only terms linear .n Note that the depen-
dence orv is exact to linear order im. For an infinitesimal

transformation with =d| one gets the renormalization group

equations from the remaining parts of the E€@®—(12) as

dw
W=(6—35//—4W)W, (15
dv
m:(Zp—w)v, (16)
ﬂ— 2— +L 17
dl_( ‘ﬂ)r (1+r)2;
dh d+2-y¢ w
a2 o (18

It follows from the nonanalyticity of the long-range term o
the Hamiltonian(1) thatv does not acquire any contribution
by the elimination step and changes only under the rescalin&.
Thus, the second equatidi6) is exact, whereas the other

three are correct only to one-loop order.

The last two equationd 7) and(18) show in general fixed
pointsr*, h*=0(w*) for the relevant parametersandh.
Using these values the first two equatidds$),(16) in com-

bination with ¢ (14) lead to four different fixed points for the
coupling constantsv andv. There are two Gaussian ones

(w*=0), namely, a short-range fixed point with* =0,
stable fore<0, p<0 with :=#*=0, and a long-range
fixed point withv* = n=2p, stable fore<6p, p>0. Be-

side these trivial fixed points there are two nontrivial ones

with w* >0. The well-known 13,14 short-range fixed point
with v* =0 follows from Eq.(15) asw* =&/3+0(&?) and
leads top=nsg=—&/9+O(&?). It is stable fore>0 as

long as »<7ygr. Butif 2p> 4R, it becomes unstable and

the long-range fixed point develops from H@6) with v*

=2p+(e—6p)/12+ O(e?), w*=(e—6p)/4+0(&?), and
is stable up top=¢/6, and = 7 _g=2p. The stability re-
gions are shown in Fig. 1. In each case the short-range

FIG. 1. Stability regions of long- and short-range behavior.
Nontrivial short- (SR and long-range(LR), as well as trivial
Gaussian shorttGSR and long-rang€GLR) regions are shown.
The behavior changesontinuouslyat the boundaries.

linearized equatioril?7) for r—r*. Here, in the case of the
Yang-Lee model, a Ward identity stat@s=1 for the order
parameter exponenf9,14] and one obtainsy=2/(d—-2
+ ) for both nontrivial fixed points.

To get a picture of the renormalization flow of the cou-
pling constants and the movement of the fixed pointsefor
>0, | have rescaled the variables s w/e, y=v/e, and
introduced the parametgr=2p/e. With a “time” t=I/¢
the equations of motion are found as

x=(1—3x—3y)X,

X

3

y=|p+5-yly. (19)

The flows and the fixed points are shown in Fig. 2 for dif-

ferent parameter values. Again one seesabetinuousbi-

furcation of the different fixed points corresponding to the

continuouscrossover of short-range and long-range behav-

ior.

In conclusion | have shown that an old result concerning

the crossover between long- and short-range interaction be-
f havior in critical systems with negative short-range Fisher
exponentysgis incorrect. As in the case of a positive Fisher
xponent, the behavior changes continuously at a line de-

__/7\'\.&
1

3x 3x

1

FIG. 2. Renormalization flow of the coupling constants
be-w/e, y=uvle for different parameter valugs=2«/¢ in the case

havior changegontinuouslyto the long-range behavior and of ¢ =6—d>0 to one-loop order. The topology of the flow changes

vice versa at the line defined bysg= 7 r. For all fixed
points, the correlation length exponentfollows from the

continuouslywith p, and there exists always a stable long-range
(y>0) fixed point ifp>—1/9.
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fined by 7sg= 7 r=2—0. This general result is in accor-
dance with previous findings in the special casel ob-
tained by real space renormalizatipf9]. The long-range
interactions dominate always as long #s:< 7. -
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