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The influence of long-range interactions decaying ind dimensions as 1/Rd1s on the critical behavior of
systems withnegativeFisher’s correlation-function exponent for short-range interactions,hSR,0, is reexam-
ined. Such systems, typically described byf3-field theories, are, e.g., the Potts model in the percolation limit,
the Edwards-Anderson spin-glass model, and the Yang-Lee edge singularity. In contrast to preceding studies,
it is shown by means of Wilson’s momentum-shell renormalization-group recursion relations that the long-
range interactions dominate as long ass,22hSR. Exponents changecontinuouslyto their short-range values
at the boundary of this region.@S1063-651X~98!50609-5#

PACS number~s!: 64.60.Ak, 05.40.1j, 64.60.Fr
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Fifteen years ago there was some debate about the i
ence of long-range interactions@decaying asJ(R);1/Rd1s

in d dimensions# on the critical exponents of systems th
show a negative Fisher-exponenthSR if the long-range
forces are absent@1,2#. Finally it was claimed that the long
range interactions leading to a Fisher-exponenthLR522s
dominate for alls,2, and, by reason of an instability, th
exponents change discontinuously to their short-range va
at s52. The assumption that long-range interactions dec
ing with s.2 are generally equivalent to purely short-ran
interactions seems to be the accepted lore. Indeed in
Gaussian part of an effective Landau-Ginzburg-Wils
Hamiltonian in momentum spaceH05 1

2 *q(r 1 j 2q21 j sqs

1•••)sqs2q (sq is the Fourier transform of an order param
eter fluctuation and*q•••5*ddq•••) where as usualj 2

stems from the short-range part of the interaction~which also
contributes tor! and j s from the long-range one,j s is na-
ively irrelevant in comparison toj 2 at long-wave lengths if
s.2. Of course, this is an incorrect argument below
upper critical dimension where the nonquadratic high
order terms of the Hamiltonian play a dominant role. T
relevance of the long-range term}qs ~which does not renor-
malize because of its nonanalyticity inq! has to be deter-
PRE 581063-651X/98/58~3!/2673~4!/$15.00
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mined by comparison with the scaling behavior of the f
inverse correlation functionG2(q)SR}q22hSR that corre-
sponds to the nontrivial stable fixed point solution of a pro
erly chosen renormalization-group transformation.

In the present Rapid Communication I show that also
the casehSR,0 the long-range interaction dominates as lo
as 22s5hLR.hSR. At hLR5hSR the exponents chang
continuouslyto their short-range values that hold everywhe
for s.22hSR. This behavior is well known for models
with hSR.0 @3–7#. In the casehSR,0 the incorrect result of
@1,2# with respect to the crossover has not been correcte
far. It arises from a renormalization group that is not app
priate for that case because it mixes in a redundant oper
in the terminology of Wegner@8#. I show that in general the
limit s→2 produces a contribution;q2lnq to the Gaussian
part of the Hamiltonian that is a relevant perturbation he
Thus, the critical exponents are different for the cases with
without such a perturbation that is therefore responsible
the apparent discontinuity of exponents.

Systems with a negative Fisher exponenthSR are typi-
cally described by criticalf3-field theoretic models@9# with
an upper critical dimensiondc56, such as the Potts model i
the percolation limit @10–12#, the Yang-Lee singularity
R2673 © 1998 The American Physical Society
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model @13,14#, and the Edwards-Anderson spin-glass mo
in the replica formalism@15,16#. Besides these equilibrium
models, nonequilibrium models of thef3 type are given by
epidemic processes that lead to percolation clusters. H
long-range interactions creep in if the disease spreads
Levy flights @17,18#. While treating these nonequilibrium
models I became aware of the earlier work@1,2# on long-
range interactions inf3 models.

In this Rapid Communication I concentrate on the disc
sion of the Yang-Lee model as the simplest among all oth
leading to similar recursion equations. To stick close to
above mentioned work, I use the Wilson renormalizatio
group transformation based on the elimination of short-w
fluctuations and a hard momentum cutoff normalized toqc
51. I perform the renormalization group to one-loop ord
and use the« expansion where«562d. This is sufficient to
produce nontrivial crossover behavior, sincehSR5O(«).

I write the Yang-Lee Hamiltonian of the scalar fields in
the following form:

H5E ddx H 1

2
~¹s!21

v
4r

@~¹12rs!22~¹s!2#

1
r

2
s21

ig

6
s31 ihsJ . ~1!

Here (¹12rs)2 is defined in momentum space a
q2(12r)sqs2q , and the momentum scale is chosen such t
uqu<qc51. I have written the long-range exponent ass
52(12r). Then r5O(«) in the crossover region. Th
Gaussian part ofH with the derivatives of the field is posi
tive definite as long asv>0 irrespective of the sign ofr, and
reads in momentum space12 q2(12v lnq)sqs2q in the limit
r→0. Thus, also in this limit the model does not coinci
with its short-ranged counterpart unlessv5O(r). The un-
perturbed correlation function~the propagator of a diagram
matic perturbation expansion! follows from Eq.~1! as

G0~q!5S q21
v

2r
@q22r21#q21r D 21

. ~2!

Thus, the scale of the fields is defined such that forr 50 the
propagator is 1 at the cutoff momentumqc51. The propa-
gator is positive definite for allq and r as it should be for
stability.

The calculation of the momentum integrals that arise
eliminating to one-loop order fluctuationssq which depend
on momenta in the intervalb21,q<1 with b'1 is standard
and does not present any technical difficulties. The coe
cients of the terms of different order in the HamiltonianH in
Eq. ~1! change by the elimination procedure to

q2H 11
v

2r
~q22r21!J 1r

→q2H 11
v

2r
~q22r21!2

2wK~v,r !

d~11r !4
ln bJ

1H r 1
w

~11r !2
ln bJ 1O~q4,w2! ~3!
l

re
by

-
rs
e
-
e

r

at

y

-

and

g→gH 12
2w

~11r !3
ln b1O~q2,w2!J , ~4!

h→h1
w/g

11r
ln b. ~5!

Here, I have defined

w5~4p!2d/2g2/G~d/2!, ~6!

andK(v,r ) is given by

K~v,r !5
d22

4
1

212r2d

8
v2

v2

8
2

12r

4
vr 1

22v
8

dr.

~7!

After elimination of the short-wavelength fluctuations an a
propriate rescaling has to be introduced as the last step o
renormalization transformation. The goal is to choose a r
caling z of the fields s,(r )5zs8(b21r ), where s,(r )
5*q<b21eiq–rsq in such a way that a renormalization grou
is constructed which leads to fixed points and does not
in redundant dangerous operators@8#. The operator gener
ated by a rescaling of the fields without an elimination
such a redundant operator. Thus, the rescaling factorz must
be chosen carefully. The old~and working! definition for z
follows from the requirement to hold the propagator finite
the cutoff momentum to exclude infrared singularities. Th
such singularities cannot arise in the full elimination proc
dure. Note that in the long-range interaction problem n
mally one holds constant the coefficient of the nonanaly
term ;q2(12r). This may be the simplest possibility bu
leads to the difficulty of a vanishing inverse propagator
the present case@1,2#. Therefore, I define

z25b22d2c~w,v !. ~8!

Here the functionc(w,v) follows from the requirement
G08(q51,r 850)5G0(q51,r 50)51 for the rescaled propa
gator. Now by rescaling Eqs.~3! and ~4!, renormalized pa-
rameters are found from

q2H 11
v8

2r
~q22r21!J

5q2b2cH 11
v

2r
~b2rq22r21!2

2wK~v,r !

d~11r !4
ln bJ ,

~9!

and

r 85b22cH r 1
w

~11r !2
ln bJ , ~10!

w85wb62d23cH 12
4w

~11r !3
ln bJ , ~11!
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h85b~d122c!/2H h1
w/g

11r
ln bJ . ~12!

Taking Eq.~9! for q51 yields the equation forc,

15b2cH 11
v

2r
~b2r21!2

2wK~v,r !

d~11r !4
ln bJ . ~13!

Expandingb5exp l to first order inl aroundl 50 one finds

c5v2
2wK~v,r !

d~11r !4

5v2
w

3 S 12
22r

4
v2

v2

8 D1O~«2!. ~14!

In the last equation I have usedr 5O(w), w5O(«), and I
have retained only terms linear in«. Note that the depen
dence onv is exact to linear order inw. For an infinitesimal
transformation withl 5dl one gets the renormalization grou
equations from the remaining parts of the Eqs.~9!–~12! as

dw

dl
5~«23c24w!w, ~15!

dv
dl

5~2r2c!v, ~16!

dr

dl
5~22c!r 1

w

~11r !2
, ~17!

dh

dl
5

d122c

2
h1

w

g~11r !
. ~18!

It follows from the nonanalyticity of the long-range term
the Hamiltonian~1! thatv does not acquire any contributio
by the elimination step and changes only under the resca
Thus, the second equation~16! is exact, whereas the othe
three are correct only to one-loop order.

The last two equations~17! and~18! show in general fixed
pointsr * , h* 5O(w* ) for the relevant parametersr andh.
Using these values the first two equations~15!,~16! in com-
bination withc ~14! lead to four different fixed points for the
coupling constantsw and v. There are two Gaussian one
(w* 50), namely, a short-range fixed point withv* 50,
stable for«,0, r,0 with h:5c* 50, and a long-range
fixed point with v* 5h52r, stable for«,6r, r.0. Be-
side these trivial fixed points there are two nontrivial on
with w* .0. The well-known@13,14# short-range fixed poin
with v* 50 follows from Eq.~15! asw* 5«/31O(«2) and
leads toh5hSR52«/91O(«2). It is stable for«.0 as
long as 2r,hSR. But if 2r.hSR, it becomes unstable an
the long-range fixed point develops from Eq.~16! with v*
52r1(«26r)/121O(«2), w* 5(«26r)/41O(«2), and
is stable up tor5«/6, andh5hLR52r. The stability re-
gions are shown in Fig. 1. In each case the short-range
havior changescontinuouslyto the long-range behavior an
vice versa at the line defined byhSR5hLR . For all fixed
points, the correlation length exponentn follows from the
g.

s

e-

linearized equation~17! for r 2r * . Here, in the case of the
Yang-Lee model, a Ward identity statesb51 for the order
parameter exponent@9,14# and one obtainsn52/(d22
1h) for both nontrivial fixed points.

To get a picture of the renormalization flow of the co
pling constants and the movement of the fixed points fo«
.0, I have rescaled the variables asx5w/«, y5v/«, and
introduced the parameterp52r/«. With a ‘‘time’’ t5 l /«
the equations of motion are found as

ẋ5~123x23y!x,

ẏ5S p1
x

3
2yD y. ~19!

The flows and the fixed points are shown in Fig. 2 for d
ferent parameter values. Again one sees thecontinuousbi-
furcation of the different fixed points corresponding to t
continuouscrossover of short-range and long-range beh
ior.

In conclusion I have shown that an old result concern
the crossover between long- and short-range interaction
havior in critical systems with negative short-range Fish
exponenthSR is incorrect. As in the case of a positive Fish
exponent, the behavior changes continuously at a line

FIG. 1. Stability regions of long- and short-range behavi
Nontrivial short- ~SR! and long-range~LR!, as well as trivial
Gaussian short-~GSR! and long-range~GLR! regions are shown.
The behavior changescontinuouslyat the boundaries.

FIG. 2. Renormalization flow of the coupling constantsx
5w/«, y5v/« for different parameter valuesp52k/« in the case
of «562d.0 to one-loop order. The topology of the flow chang
continuouslywith p, and there exists always a stable long-ran
(y.0) fixed point if p.21/9.
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fined by hSR5hLR522s. This general result is in accor
dance with previous findings in the special cased51 ob-
tained by real space renormalization@19#. The long-range
interactions dominate always as long ashSR,hLR .
a
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